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Computer simulation of a biaxial liquid crystal 

by MICHAEL P. ALLEN 
H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, 

Bristol BS8 ITL, England 

(Received 28 March 1990; accepted 28 April 1990) 

We report the first results of Monte Carlo simulations using hard ellipsoids 
with three distinct semi-axes a , b , c  chosen such that abc = I ,  c/a = 10 and b/a 
varies between 1 and 10. A survey of the phase diagram provides evidence for the 
existence of isotropic, nematic, discotic, and biaxial liquid crystal phases; this is 
believed to be the first simulation of a biaxial phase of a bulk liquid with full 
rotational and translational freedom. We find that the phase diagram is approxi- 
mately symmetric under the transformation {a ,  b, c }  -+ { a - '  , b-' , c - '  }, and that 
the biaxial phase is most stable at about the expected (self-conjugate) value 
b = Jar .  For this value, the isotropic phase transforms directly into the biaxial 
phase on compression, at a density at least 50 per cent higher than that at which- 
the nematic-isotropic transition occurs in the corresponding uniaxial systems. 
These results are in semi-quantitative agreement with recent theories, but there are 
also some significant differences. 

1. Introduction 
In recent years significant progress has been made in the simulation of liquid 

crystals using molecular models ranging from the moderately realistic to the highly 
idealized [ 1,2]. While realistic models have remained computationally expensive it has 
been necessary to use simple, hard particle, models to  establish the existence of 
orientationally ordered fluid phases of various kinds. Hard ellipsoids of revolution are 
known to form nematic (N,) and discotic (N-) phases [3]. Hard spherocylinders will 
form a smectic phase [4], while a cut-sphere model has been used to demonstrate 
columnar ordering [5]. 

All of these models are axially symmetric, and the removal of this restriction is an 
obvious next step in making the molecular model more realistic. In addition, the study 
of biaxial molecules leads to the possibility of simulating a bulk biaxial liquid crystal 
phase (B). This type of system has been studied theoretically [6-lo], and the general 
form of the phase diagram (in shape and density variables) is expected to be as 
follows. For rod-like molecules a weakly first order I + N, transition occurs on 
compressing the system, while for the disc-like molecules a similarly weak first order 
I + N- transition is seen. However, around an intermediate crossover shape, the 
biaxial phase separates N, from N - .  The N, c-t B and N -  H B transitions are 
expected to be continuous, the ordering of secondary molecular axes being similar to 
the XY-like behaviour seen in two dimensional systems of highly elongated ellipses [ 1 I] 
and hard lines [12]. The biaxial phase extends down in density to meet the isotropic 
phase. All four lines of transition meet at a bicritical point, the weak N, -+ I 
transitions weakening further and actually becoming continuous at  this point. 
Detailed theoretical studies of the phase diagram have been carried out for hard 
spheroplatelets and hard ellipsoids [9, 101. 
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500 M. P. Allen 

In either case, taking a, b and c to measure the length, breadth and width 
respectively of the hard body concerned, the crossover shape is predicted to be for b 
equal to, or slightly above, the value b = J(ac). In the simplest approximations 
[6-81 a symmetry relation exists under the transformation {a, b, c }  c1 {a', b', c ' )  = 
{c,  ac/b, a}, and this leads to the identification of b = ,/(ac) as a self-dual point. More 
specifically, as set out by Mulder [9], Straley's theory expresses the two body 
interaction parameters as linear combinations of terms involving coefficients 
abc, a(b2 + c 2 )  and cyclic permutations thereof. If we compare systems of molecules 
of equal volume, i.e. we set abc = a'b'c' = 1 for convenience, then this transforma- 
tion is simply {a, b, c} c* {a', b', c'}  = { a - ' ,  b-' , c-' }, under which all of these coeffi- 
cients are invariant. In the uniaxial limit (a = b # c for example) this transformation 
is the well-known rod c* disc interconversion, which is reflected in the approximate 
symmetry of the phase diagram of hard ellipsoids of revolution [3] and the exact 
equality of reduced second virial coefficients for conjugate pairs of these molecules. 

The more recent theoretical treatments of biaxial systems [9,10] attempt to discuss 
the limitations of this approximate prediction, and to calculate the density at which 
the bicritical point is to be found. However, to date, no simulation evidence to test 
the theories has been forthcoming. In this paper we describe the first steps in this 
direction: the Monte Carlo simulation of a system of ellipsoids with c/a = 10 and b/a 
in the range 1 6 b/a 6 10, and for densities covering the full fluid range. In the 
uniaxial limits b/a = 1 and b/a = 10 this system is known to have well-defined 
N, ++ I transitions at about 25 percent of the close-packed density, well below any 
soid-fluid freezing transition. Thus, we expect to see the way in which increasing 
molecular biaxiality influences these transitions, and to be able to see a biaxial liquid 
crystal over a reasonable range of densities around the crossover shape b/a = J 10. 

Because of the nature of the phase transitions in these systems, and the require- 
ment to simulate large systems of quite anisometric molecules, we expect to have 
difficulty in locating the transitions and the bicritical point with any degree of 
accuracy. Very sluggish behaviour, giving rise to metastable states, will occur. None 
the less this first survey will point the way to more extensive simulations to follow. 
Here we attempt to answer two questions; does the phase diagram have the expected 
general form?, and approximately what is the extent of the biaxial phase? 

2. Simulation details 
We studied a system of N = 343 molecules in truncated octahedral periodic 

boundary conditions; normal Metropolis Monte Carlo techniques were used [ 13, 141. 
At each move for each molecule a combined random translation and rotation was 
attempted. A check for overlaps with neighbouring molecules was made, and the 
move accepted if  no overlaps were detected. It proved convenient to represent the 
molecular orientations using quaternion parameters, and to rotate the molecules 
using Vesely's prescription [I  51. The sizes of rotational and translational moves were 
adjusted to give an acceptance rate of 40-50 per cent. 

The Perram-Wertheim overlap criterion [ 161 was employed. This is expressed in 
terms of a function Fpw (ai, 4, r i j )  of the orientations ai, aj and centre-to-centre 
vector r i j  of each pair of molecules. The value Fpw = 1 corresponds to a pair in 
contact, overlapping pairs having Fpw < 1 and non-overlapping pairs Fpw > 1. Fpw 
is evaluated by numerical maximization of a function F(1)  

Fpw = max F(I ) ,  (1) 
OCiCl 
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Computer simulation of biaxial phase 50 1 

but non-overlapping pairs are often quickly detected in a simulation by finding 
F ( I )  > 1 for I = +. 

The pressure was calculated using the method of Vieillard-Baron [ 171 as 
formulated by Perram et al. using their overlap function [16]. For these systems this 
method is precisely equivalent to that of Eppenga and Frenkel [18]: it amounts to 
counting the number of pair overlaps which would result from a very small uniform 
scaling of the particle size (or system density). Specifically we write 

where ( . . . ) is a simulation average, and Noverlap is the number of pair overlaps which 
would result in the N molecule system from applying the modified overlap criterion 
Fpw < 1 + E ,  E being a specified small number. This corresponds to scaling all 
particle dimensions by a factor (1  + or alternatively the system density by a 
factor (1 + E ) ~ ' ~ ,  i.e. Ap/p  = $ E .  We followed Perram et af .  [I61 in using a value of 
E = 0.01, which proved to be satisfactory. 

Four second rank order parameters characterize uniaxial and biaxial ordering in 
these systems [8,9] 

Q f  = (t(3cos20 - I ) ) ,  

Q:, = ( 4 4 3  sin20cos24), 

Q:, = (t43 sin20cos 2$), 

Q:, = ($( I  + cos2 0) cos 24  cos 2$ - cos 0 sin 24 sin 2$), 

where 0, 4 and $ are the Euler angles of a typical molecule with respect to the 
laboratory axes. In practice only two of these parameters, Qf and Q:, are significant, 
the former being the usual uniaxial order parameter measuring the alignment of the 
principal molecular axis (z) with the director (taken to be in the 2 direction), and the 
latter being sensitive to the alignment of the subsidiary (x and y )  molecular axes along 
the laboratory X and Y directions. This can be seen more easily if we re-write the 
definitions in Cartesian form. Define a dyadic formed from the unit vectors R,, q,, i,, 
along each of the axes of molecule i ,  summed over all molecules: 

(4) 
Q " " = - C ( 2 f f  I "  

- 2 I,? r p  - +&p), a,B = 1,293, 
N ,=I 

with similar definitions for QLj and Q:;; 6,, is the Kronecker delta. Then the order 
parameters are 

Apart from finite-size corrections, Q& should be zero in an isotropic phase, and will 
be non-zero, increasing towards its maximum value of I ,  in a uniaxial (or biaxial) 
phase. Similarly, Q:, should be zero in an isotropic or uniaxial phase, and will be 
non-zero, increasing towards its maximum value of 1, in a biaxial phase. 

In the simulation the principal and subsidiary molecular axes must be identified, 
of course, and the laboratory X ,  Y and Z directions are also to be determined. An 
unambiguous procedure for this was developed, based solely on the assumption that 
the appropriate molecular axes could be identified with the axes of symmetry of the 
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molecule rather than being arbitrarily oriented in the molecule. First, for each of the 
molecular symmetry axes, these dyadics were calculated. In each case the set of three 
eigenvalues and eigenvectors were determined, the top eigenvalue I ,  and its corre- 
sponding eigenvector being of interest. The molecular axis corresponding to the 
largest A+ was then identified as the principal molecular axis z, the corresponding 
eigenvector was identified as the laboratory Z direction, and the eigenvalue was equal 
to Z - Q * Z. This is the usual procedure for calculating the nematic order parameter 
[I91 the only complication being the need to decide amongst the three possible 
molecular axes. The second largest A +  was taken to identify the secondary molecular 
ordering axis y. The corresponding eigenvector was used to construct the second 
laboratory axis Y,  it being only necessary to orthogonalize with respect to Z .  The 
remaining molecular axis was taken to be x, while X was constructed perpendicular 
to Y and Z .  With these axes defined, the instantaneous order parameters were straight- 
forwardly calculated from equation (5) ready for averaging over the simulation run. 

A range of molecular shapes with semiaxes a, b, c was examined. For a fixed ratio 
c/a = 10, the following values of b/a were studied over the full liquid density range: 
b/a = 2.0,2.5,2.8 18,3.162,3.548,4.0,5.0. These values were chosen to lie at con- 
venient intervals on a logarithmic scale of b/a. The value b/a = 3.162 = J l O  is the 
expected approximate crossover shape, and the pairs (2.0,5.0), (2.5,4.0) and 
(2.818,3.548) are conjugate shapes in the sense of the previous section. Results for 
b/a = 1 and b/a = 10 have been obtained previously using a larger system size of 
N = 500 [l] and employing the molecular dynamics method. Densities in the range 
0.2 < p/pcp d 0.6 were studied for every shape. Here pcp is the close packing density 
which is given by 8pcpabc = J2 assuming that the structure is obtained by scaling a 
close packed hard sphere crystal by factors of a, b and c in three perpendicular 
directions. The hard sphere system freezes at p/pcp TZ 0.67, and slightly higher tran- 
sition densities are seen for those ellipsoids of revolution studied thus far [3], so the 
chosen densities are all expected to lie within the fluid range. In addition, more 
extreme shapes b/a = 1.259, 1.585, 6.310, 7.943 were studied at  p/pcp = 0.4,0.5, to 
confirm further the smooth extrapolation of the results reported here to those 
obtained earlier for b/a = 1, 10. 

Several sequences of runs were carried out. A typical run would start from the final 
configuration of a simulation a t  a nearby density or molecular shape. At each state 
point an equilibration period of about lo4 Monte Carlo sweeps (moves per particle) 
was allowed, and’then a production run of at  least a further lo4 sweeps was carried 
out. Close to the phase transitions runs of up to five times this length were employed. 
We adjusted densities and shapes in both directions, checking for hysteresis and 
discrepancies in the results. Most of the results reported here are for sequences 
starting originally from an orientationally ordered, perfect biaxial, configuration, and 
then progressively changing the density from one state point to the next. However, 
checks in the reverse direction were also carried out as we now describe. 

The starting point was prepared as follows. For five of the shapes, b/a = 
2.0,2.5,3.162,4.0,5.0, an oriented fluid at  p/pcp = 0.5 was obtained by slow uniform 
compression of a dilute system, allowing Monte Carlo translational moves, but 
keeping perfect orientational alignment. Having achieved the desired reduced density 
the orientational constraint was removed, and the system allowed to equilibrate. Some 
systems remained biaxial, others quickly converted to uniaxial nematic or discotic 
phases. In each case, following equilibration, production runs were carried out. The 
density was then progressively changed up or down, additional time allowed for 
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Computer simulation of biaxial phase 503 

equilibration at each new state point, and results accumulated at the new density. As 
the density was lowered, a transition to the isotropic liquid was seen at some point, 
for each shape. 

Having carried out these sequences, additional runs were conducted by uniform 
compression from the disordered isotropic phase, to observe the spontaneous for- 
mation of orientationally ordered states. In addition, the two near-crossover shapes 
b/a = 2.81 8,3.548 were studied at densities p/pcp = 0.5,0.6 by equilibrating at  con- 
stant density, but converting the shape from a previously equilibrated nearby state 
point. Approaches were made from both the b/a  = 3.162 shape (biaxial phase) and 
from b /a  = 2.5,4 respectively (both in the uniaxial phase). 

3. Results 
The excess pressures Z = PV/NkT - 1 and orientational order parameters 

obtained from these simulation runs are given in tables 1 and 2. We estimate the 
statistical errors on Z to be of order 5 per cent, and on the order parameters to be of 
order 10 per cent, but the systematic errors due to poor equilibration near the phase 
transitions may be much more serious, as we have discussed. Hence these results 
should be treated with some caution, and we bear this in mind later. 

Figure 1. Contours of the orientational order parameters Q& (solid lines) and Qi, (dashed 
lines) in the shape-density plane. Density is expressed as  p/p,, where pcp is the close 
packed density, and the axial ratio b/a is represented on a logarithmic scale. The contour 
interval is 0.1 and the contour at 0.2 is highlighted in each case. 

The principal result of this paper is the rough determination of the phase diagram 
as revealed by calculating the uniaxial and biaxial order parameters Q& and Q&. In 
figure 1 we show contours of Q&, and Q:, on the shape-density phase diagram. 
These results are obtained from the sequences of runs originating in the orien- 
tationally ordered phases (see table I).  It is quite possible that much longer runs would 
reveal some of the ordered phase state points close to the transition to be metastable, 
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504 M. P. Allen 

Table 1. Results for simulation sequences which progress from more ordered to less 
ordered phases. 

P I P C P  Qk Qi2  Z Q&J 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

0.20 
0.30 
0.40 
0.50 
0.60 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

0.40 
0.50 

0.40 
0.50 

0.06 
0.06 
0.12 
0.1 1 
0.52 
0.57 
0.75 
0.77 
0.82 

0.06 
0.18 
0.62 
0-78 
0.86 

0.06 
0.1 1 
0.06 
0.34 
0.59 
0.76 
0-83 
0.88 
0.92 

0.05 
0.1 1 
0.07 
0.36 
0.72 
0.82 
0.87 
0.90 
0.93 

0.78 
0.90 

0.82 
- 

b/a = J l O  

0.03 
0.03 
0.06 
0.04 
0.24 
0.28 
0.56 
0.58 
0.71 

b/a = 2.818 

0.04 
0.08 
0.07 
0.34 
0.63 

b/a = 2.5 

0.03 
0.04 
0.06 
0.04 
0.1 1 
0.09 
0.15 
0.19 
0.18 

b/a = 2 

0.04 
0.04 
0.03 
0.04 
0.04 
0.07 
0.06 
0.10 
0.15 

b/a = 1.585 

0.06 
0.04 

b/a = 1.259 

0.05 
- 

2.69 
3.70 
4.78 
5.97 
6.65 
7.78 
8.47 

10.24 
12.25 

2.68 
4.65 
6.39 
8.77 

12.31 

2.64 
3.66 
4.80 
5.84 
6.4 1 
7.13 
8.61 

10.30 
12.48 

2.68 
3.67 
4.88 
5.82 
6.04 
6.66 
7.99 
9.64 

11.82 

5.64 
7.53 

5.45 
- 

0.07 
0.25 
0.67 
0.8 1 
0.86 

0.05 
0.08 
0.12 
0.55 
0.70 
0.80 
0.87 
0.89 
0.9 I 

0.06 
0.08 
0.20 
0.65 
0.75 
0.83 
0.89 
0.92 
0.93 

0.82 
0.9 1 

0.86 
0.92 

Qi2  

b/a = 3.548 

0.04 
0.05 
0.10 
0.28 
0.61 

b/a = 4 

0.04 
0.03 
0.05 
0.03 
0.06 
0.09 
0.04 
0.07 
0.12 

b/a = 5 

0.03 
0.03 
0.04 
0.07 
0.04 
0.05 
0.05 
0.09 
0.08 

b/a = 6.310 

0.03 
0.06 

b/a = 7.943 

0.04 
0.04 

Z 
~ 

2.72 
4.68 
6.22 
8.70 

12.37 

2.79 
3.83 
4.8 1 
5.40 
6.25 
7.06 
8.28 

10.12 
12.70 

2.84 
3.87 
4.74 
4.95 
5.72 
6.69 
7.8 1 
9.65 

11.80 

5.38 
7.43 

5.29 
7.35 
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Table 2. Results for simulation sequences which progress from less ordered to more 
ordered phases. 

P I P C P  Qf Q:, Z Qf Q:, Z 

0.40 0.23 
0.45 0.49 
0.50 0.66 

0.50 0.79 
0.60 0.89 

0.35 0.21 
0.40 0.38 
0.45 0.6 1 
0.50 0.73 

0.30 - 
0.35 0.14 
0.40 0.34 
0.45 0.60 
0.50 0.79 

bla = J l O  

0.09 
0.13 
0.33 

b/a = 2.818 

0.18 
0.27 

bla = 2.5 

0.05 
0.08 
0.16 
0.2 1 

bla = 2 

0.02 
0.04 
0.05 
0.12 

- 

7.18 
8.32 
9.23 

8.86 0.82 
12.72 0.90 

5.96 0.25 
6.95 0.32 
7.86 0.60 
9.03 0.78 

- 0.17 
6.20 0.31 
7.06 0.55 
7.55 0.84 
8.50 0.89 

bla = 3.548 

0.16 8.70 
0.13 12.70 

bla = 4 

0.05 5.80 
0.11 6.76 
0.17 7.49 
0.08 8.60 

bla = 5 

0.04 4.84 
0.06 5.67 
0.08 6.22 
0.06 6.63 
0.08 7.87 

not thermodynamically stable, and this would displace some of the contours upwards 
in density. The contours are plotted at intervals of 0.1, and we have highlighted the 
contour value Q = 0.2 in each case to give a guide to the location of the phase 
transition lines, but alternative choices are possible. Because of the way we have 
calculated the order parameters, they are both guaranteed to be positive and of order 
U [ J ( l / N ) ]  % 0.05 even in the isotropic phase, and they will have statistical fluc- 
tuations of similar size superimposed on them. The exact shape of the lowest contour 
Q = 0.1 in each case is therefore not very significant. Since we have chosen density 
rather than pressure to specify the state point in this diagram, we expect there to be 
coexistence regions for the first order N, ++ I phase transitions, but these transitions 
are so weak that the coexisting densities will be quite close and we make no attempt 
to distinguish them on the basis of these results. 

The shape parameter b/a is plotted on a logarithmic scale, and with this choice the 
phase diagram is approximately symmetric about the self-conjugate crossover shape. 
However, unsymmetrical features are apparent. The uniaxial order parameter con- 
tours are shifted to slightly lower densities for the disc-like spheroids compared with 
their rod-like counterparts, in agreement with previous results for the extreme cases 
b/a = I ,  10 [ I ]  and for other axially symmetric systems [3]. 

The biaxial region seems to be restricted to a rather narrow range of shapes. If we 
ignore the behaviour of the Qi, = 0.1 contour as being insignificant, we cannot claim 
to see any displacement of the biaxial region in either direction from the self-conjugate 
value b/a = J l O ,  nor much evidence of asymmetry about this line in the diagram. 
Our results provide only a crude guide to the location of the B e, N, transition lines, 
which are quite steep. 
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506 M. P. Allen 

As a first attempt to assess the problem of metastability, we compare in figure 2 
the results from the expansion runs with those from the compression runs started 
from the isotropic limit. It is clear that there are some problems in the vicinity of the 
I + N,/B transitions, and that further work is needed to locate these transition 
densities accurately. None the less it is also clear that the appropriate ordered phases 
are formed spontaneously on compression. In particular at the crossover shape the 
isotropic phase is converted directly into a biaxial phase, although hysteresis/ 
metastability is seen in both Q&, and Q:*; the biaxial order parameter seems to be the 
more sluggish in response to compression on this simulation time scale. 

Figure 2. Order parameters as functions of  density for two shapes b/a = JlO,2. We show the 
uniaxial parameter QL (circles) for both shapes and the biaxial parameter Qi, (squares) 
for b/a = J l O .  Solid lines join results of sequences of runs progressing from high to low 
density. Dashed lines join results of  sequences progressing from low to high density. 

To follow up this point, we present in figure 3 the time evolution (in the Monte 
Carlo sense) of the order parameters as seen on compressing the b/a = ,/I0 system. 
It is clear that proper equilibrium has not been attained for the p/pcp = 0.45 system, 
but that both order parameters are continuing to increase, and that this is also true 
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1 
b.:.. I'i4 1 7  ..... 
: ... :.:. . . ... 

I I I f 

for p/pV = 0.50 even after more than 35000 sweeps. None the less, there are indi- 
cations that the biaxial phase is forming at p/pcp = 0.45, and it is clearly stable at 
p/ps = 0.50; much longer runs should give reliable agreement between expanding 
and compressing sequences. 

0.5 

d 

0.0 

LL 

k-sweeps 
Figure 3 .  Uniaxial (QL) and biaxial (Qi,) order parameters as function of Monte Carlo time 

(in sweeps, i.e. attempted moves per particle) for compression of the b/n = ,/I0 system. 
The densities p/pcp = 0.40,0.45,0.50 are indicated. The shaded regions denote periods 
of 1000 sweeps during which the density was uniformly changed from one value to the 
next. 

These general features are echoed in the behaviour of the pressure, as measured 
by Z = PV/NkT - 1 .  We compare, in figure 4 Z as a function of density for the 
crossover shape b/a = ,/lo with the results for the rod-like molecules. A similar 
comparison with the disc-like molecules is made in figure 5. Once again we highlight 
the metastability problem. It should be emphasized that the results for b /a  = 1,10, 
included here for comparison, were obtained using much longer simulation runs, and 
employing molecular dynamics rather than Monte Carlo. They do not suffer from 
such extensive metastability, although in the immediate vicinity of the phase tran- 
sition (where Z apparently drops as p increases, while the system changes from one 
branch of the equation of state to the other) there is an effect. One additional point 
of interest emerges from these figures. For both rod-like and disc-like shapes, the 
equation of state curve seems to vary less dramatically at the transition as the 
molecules lose their axial symmetry. This may be consistent with the expected 
weakening of the transition, but more direct evidence is required to confirm this. 

Finally, in figure 6 we plot Z as a function of shape for each of the reduced 
densities. Within the isotropic and nematic phases we can see that our results 
extrapolate smoothly over to the uniaxial b/a = I ,  10 limits. There is a surprising 
apparent discontinuity in the curves on crossing the tentative B t* N, phase 
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508 M. P. Allen 

boundaries. Note that almost all of our biaxial phase simulations are for the cross- 
over shape b/a = ,/lo. On the basis of the simulation runs conducted for b/a = 
2.818,3.548 we believe that these shapes lie just within the biaxial region for 
p/pcp = 0.6, but outside it for p/pV = 0.5. The overall imperfect symmetry of the 
equation of state with respect to conjugate molecular shapes is again evident. 

15 

10 ' 

N 

58 

0 
QO Q2 0.4 0.6 

Figure 4. Z = P V / N k T  - 1 versus reduced density for b/a = ,/I0 compared with results 
for rod-like molecules. Solid lines join results of sequences of runs progressing from high 
to low density. Dashed lines join results of sequences progressing from low to high 
density. The long dashes divide state points identified as belonging to the isotropic phase 
(I) from those belonging to the nematic phase (N+). 

4. Discussion and conclusions 
Our simulation results are clearly very crude first estimates, in the vicinity of the 

phase transitions, for the reasons set out in the introduction. In the case of hard 
ellipsoids of revolution, the transition densities for the weakly first-order N + I 
transition could be estimated [3] by free energy calculation. It has been suggested [20] 
that even a small amount of molecular biaxiality may dramatically further weaken 
this transition, thus making it much more difficult to locate the intersection point of 
free energy curves. Our simulations seem to be consistent with the weakening of the 
transition, but additional work is necessary before quantitative conclusions can be 
drawn. As the biaxiality increases we may expect pretransitional fluctuations, already 
observed for the axially symmetric case [21] to be more dominant. The B CI N, 
transition is expected to be continuous, XY like, with long ranged algebraic decay of 
correlations; to characterize it will probably require larger system sizes and longer 
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15 

10 

N 

5 -  

509 

- 

- 

6 0  
4 

5 

10 

/ 
/ 

0.2 0.4 0.6 

Figure 5.  Z = P V / N k T  - 1 versus reduced density for b/a = ,/I0 compared with results 
for disc-like molecules; notation as for figure 4. The long dashes divide state points 
identified as belonging to the isotropic phase ( I )  from those belonging to the discotic 
phase (N-).  

10 

N 

5 

2 f i  5 10 
0 

1 
b la  

Figure 6. Z = P V / N k T  - 1 versus b/a (solid lines) for various reduced densities p/pcp.  b/a 
is represented on a logarithmic scale. The dashed lines separate state points identified as 
belonging to different phases, and we break the solid lines where they cross these. 
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simulation times than were available for this study. Our simulation results certainly 
show evidence of insufficient simulation times around the phase transitions. 

None the less, with these caveats in mind, the approximate phase diagram deter- 
mined here is likely to be a reasonable guide. The general form is indeed as expected, 
with a biaxial phase separating nematic and discotic uniaxial phases. The transition 
from isotropic to orientationally ordered liquid is displaced up in density at  about the 
crossover shape b x ,/(uc), relative to its position for more rod-like or disc-like 
shapes, because of the presence of the biaxial phase above. Close to this shape the 
system presumably postpones the transition because, on forming the ordered phase, 
it must sacrifice most of its orientational disorder at once. Away from this shape the 
system can give up just part of its orientational disorder, forming a uniaxial phase, 
as a trade for greater overall freedom, and it does this more readily. Our estimates of 
the transition densities are likely to be lower bounds, because the metastability effects 
will have overestimated the range of the ordered phase. Consequently we can say the 
the bicritical point occurs at a density p/pcp x 0.4 or greater, at  least 50 per cent 
higher than the reference N t--t I transition in the corresponding uniaxial systems. The 
bicritical point seems to be quite close to the shape b = ,/(uc), but our results are not 
sufficiently accurate or reliable to suggest whether it in fact lies to one side or the other 
of this value. In the ordered phase, the biaxial region seems to cover a quite narrow 
range of molecular shapes (and here again, because of metastability, we have 
essentially established an upper bound on the range of this phase) right up to the 
highest densities where we expect the solid phase to appear. Clearly much more effort 
must be concentrated in the region 2.5 < b/a < 4 before we can draw more definite 
conclusions regarding the biaxial phase. 

We can attempt to compare our preliminary results with the smoothed density 
approximation of Holyst and Poniewierski [ 101 for the location of the bicritical point. 
Unfortunately they were only able to study the hard ellipsoid system for c/a < 7, 
so we must extrapolate their results to c/a = 10. They predict that the bicritical 
shape ratio b/,/(ac) deviates slightly from unity as c/a increases. The differ- 
ence b/,/(ac) - 1 is small (a few per cent) but quite strongly varying. A plot of 
log(b/,/(ac) - 1) versus log(c/a) is moderately linear, and an extrapolation to c /a  = 
10 gives b/J(ac) = 1.2, i.e. a shift of 20 per cent from b/a = J l O  to almost 4. 
Our results certainly do not seem to be consistent with such a large shift, but 
of course the extrapolation of the theoretical predictions may not be trustworthy. 
Better agreement is seen with the predicted bicritical density, which decreases steadily 
as c/a increases. We estimate an extrapolated value of p/pcp z 0.35-0.40, which 
agrees well with our simulation results. 

Further simulation work should now concentrate on examining the free energies 
in the vicinity of the N, e, I transitions, and on determining their order, as 
well as locating more accurately the B c, N, transition lines and studying the 
range of spatial correlations in the ordered phases. This work is currently in 
progress. 

The simulations reported here were carried out on the Bristol University IBM 
3090- I50 VF; thanks are due to the Computer Centre Staff for advice and assistance. 
Conversations with D. Frenkel and B. Mulder, and support for international travel 
from NATO, are also gratefully acknowledged. 
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